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Abstract

The level-set method of Sussman et al. [J. Comput. Phys. 148 (1999) 81] is extended such that flows with multiple

moving contact lines can be simulated, accounting for inertia, a relation between contact-line speed and contact angle,

slip and contact-line hysteresis. The convergence properties of the method are investigated, with particular attention on

the resolution of the contact-line stress singularity. Results are compared with a lubrication theory for spreading

droplets.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Incompressible two-phase flows with moving contact lines are common in a variety of applications, such

as coating and biological processes (e.g. [21]). A difficulty of simulating such flows is that the Navier–Stokes

equations for both fluids, in combination with no-slip boundary conditions, predict that an infinite force is
required to move a contact line [6]. We shall follow here the approach in which this stress singularity is

avoided by replacing the no-slip condition by the Navier condition for the velocity component U1 along

the entire wall [6]
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where k is the sliplength. Alternative approaches are to include microscopic (van der Waals) interactions

between the fluids and the solid wall or a precursor film ahead of the moving contact line, or to use a diffuse

interface (see [3,7,15,16,21] for a review of different approaches).

In addition to avoiding the stress singularity, the contact angle must be prescribed, or, alternatively, the

contact-line speed. When prescribing the contact angle [12], the value of the angle is dependent on the sign
of the contact-line speed Ucl because of hysteresis,
h ¼ hA if U cl > 0;

h ¼ hR if U cl < 0;

hR 6 h 6 hA if U cl ¼ 0;

ð2Þ
where h, hA and hR are the dynamic, advancing and receding contact angle, respectively [9]. A simple exam-

ple of prescribing the contact-line speed is
U cl ¼
jðh� hAÞ if h > hA;

jðh� hRÞ if h < hR;

0 otherwise:

8><
>: ð3Þ
The merits of these approaches are discussed in [6,14].

A numerical simulation technique that includes (1) and (2) or (3) allows one to assess in practical appli-

cations whether contact-line motion is limited by slip or the contact-line speed/contact angle relation, and

to what extent. Analytical approaches are usually restricted to thin film flows, such that lubrication argu-

ments can be used, or to creeping flows.
At present, no simulation technique appears to be available for the problem of solving the equations of

motion with inertia for both phases with (1) and (3). The problem was resolved only partly by Renardy

et al. [22], who developed a volume-of-fluid method for moving contact lines with fixed dynamic contact

angle. They accounted for slip, but such that k was proportional to the grid spacing. It is unclear how their

method can be extended to account for hysteresis (or for (3)). Other methods (e.g., the lattice-Boltzmann

method of Kang et al. [17]) do not track the contact angle in time. Full numerical simulations of a droplet

sliding down a wall in the creeping flow limit have been presented recently in [19]. In [19], effective slip was

provided by discretisation errors, such that the sliplength is a function of grid spacing [20].
Promising results were obtained by Sussman and Uto [28] and Son et al. [26], who used a level-set ap-

proach for a single contact line, with constant contact angle, not accounting for slip. In the present paper,

the level-set method of [27] is adapted to account for multiple moving contact lines, slip, and (3) (or (2)).

The sliplength k is an input parameter in the method proposed here. It is shown that the results for a given

value of k appear to be convergent with respect to the grid spacing. Results are compared with previous

numerical and analytical work, and the regularisation of the stress singularity and the qualitative flow struc-

ture are analysed in Section 5. The validity of a macroscale approach for cases where k is very small is inves-

tigated in Section 6.
2. Level-set method

Several level-set methods for incompressible two-phase flow have been proposed. The single-grid (two-

dimensional) version of the method of [27] has been used here, because it allows for no-slip boundary con-

ditions. Some modifications were made, in particular to ensure mass conservation and to allow standard

software to be used, and these are discussed in this section.
The level-set function / is taken as the signed distance function from the interface, the sign being used to

distinguish between the two fluids; the zero level set corresponds to the fluid interface. The equations of
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motion are written in a form that is valid throughout the entire domain, where the density and viscosity are

functions of /(x, t). The abrupt change in these fluid properties across the interface is smoothed out over a

length that is proportional to the grid spacing. The action of surface tension is represented as a singular

term in the momentum equation, also smoothed out over several mesh points. The equations of motion

are solved using the variable density/viscosity method of [2]. At time tn the level-set function /n
i;j and veloc-

ity components Un
i;j are known and defined at cell centres, the pressure pn�1=2

iþ1=2;jþ1=2 is defined at cell corners. A

uniform Cartesian mesh is used. The timestep Dt is determined as in [27]. Each timestep consists of four

steps (for details see [27]):

Step 1. Level-set update for /, using the advection equation
/nþ1 ¼ /n � Dt½U � r/�nþ1=2
: ð4Þ
The advection term on the right-hand side is evaluated using an explicit predictor–corrector scheme, that

only depends on variables evaluated at the previous timestep. In a predictor step, U and / at cell faces is

obtained from Taylor-series expansions from either side of the cell face. An upwinding procedure is used as

the correction step. The advection term is finally obtained from central differentiation. The cell-face velocity

components are not necessarily divergence-free. A MAC projection (which involves solving a Poisson equa-
tion) can be applied to enforce incompressibility, which leads to somewhat improved convergence rates [2].

The MAC projection step was implemented, but it was not used for the results presented in this paper. The

intermediate value of the level-set function is used to obtain
qnþ1=2 ¼ q1 þ ðq2 � q1ÞH �ð/nþ1=2Þ; lnþ1=2 ¼ l1 þ ðl2 � l1ÞH �ð/nþ1=2Þ; ð5Þ
where for instance q1 is the density of fluid 1. H�(/) is the smoothed Heaviside function
H �ð/Þ ¼
0 if / < ��;
1
2
1þ /

�
þ 1

p sinðp/=�Þ
� �

if j/j 6 �;

1 if / > �:

8><
>: ð6Þ
The smoothing parameter � is set to 1.5Dx.
Step 2. Semi-implicit viscous solve for U* = (U*,V*):
U� �Un

Dt
¼ � U � rU½ �nþ1=2 � Gpn�1=2

qnþ1=2
þ L

2qnþ1=2
�Mnþ1=2

qnþ1=2
þ g: ð7Þ
Here, L and M are central-difference discretisations of the viscous and surface tension terms, respectively;
Gp is an approximation to $p. Details of these discretisations can be found in [27]. In the present imple-

mentation, Crank–Nicholson is used for the normal viscous stresses only, i.e., L ¼ ðL� þLnÞ=2 (the other
viscous terms are treated explicitly), such that standard multigrid software could be used to solve (7) (with

Neumann boundary conditions for U* � Un) down to machine accuracy. The advection term (first term on

the right-hand side) is obtained using the same technique as for the advection term in (4).

Step 3. Projection step for Un + 1 using
Unþ1 �U�

Dt
¼ �Gqnþ1=2

qnþ1=2
: ð8Þ
The scalar qn+1/2 is obtained from
Lqq ¼ D
U� �Un

Dt

� �
; ð9Þ
where D and Lq are the discretised divergence and density-weighted Laplace operators. The nine-point

stencil for Lq used by [27] results from a variational form of the incompressibility condition (after
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substitution of (8), cf. [2]), in which the pressure is approximated by a piecewise bilinear function on

squares. Although requiring a non-standard multigrid technique, this was found to be especially suitable

for large density ratios (such as air/water mixtures), for which the method used here may be rather slowly

convergent. In the present work, relatively small density ratios will be used, and we have approximated

the pressure as a piecewise linear function on triangles, which leads to the standard five-point finite dif-
ference Laplacian [2],
ðDxÞ2ðLqqÞiþ1
2
;jþ1

2
¼ � 1

qi;jþ1

þ 1

qi;j
þ 1

qiþ1;j
þ 1

qiþ1;jþ1

 !
qiþ1

2
;jþ1

2
þ 1

2qiþ1;j
þ 1

2qiþ1;jþ1

 !
qiþ3

2
;jþ1

2

þ 1

2qi;j
þ 1

2qiþ1;j

 !
qiþ1

2
;j�1

2
þ 1

2qi;jþ1

þ 1

2qiþ1;jþ1

 !
qiþ1

2
;jþ3

2
þ 1

2qi;jþ1

þ 1

2qi;j

 !
qi�1

2
;jþ1

2

and a standard four-point discretisation of the right-hand side of (8). Almgren et al. [2] found only small
differences between the results for variable-density flows. For cells adjacent to a solid wall at j ¼ 1

2
, after

setting the divergence of (8) equal to zero the no-penetration condition leads to
1

qi;1
qi�1

2
;1
2
þ qiþ3

2
;1
2
� 2qiþ1

2
;1
2

� �
þ 1

qiþ1;1

qiþ1
2
;3
2
þ qiþ3

2
;1
2
� 2qiþ1

2
;1
2

� �
¼ Dx

Dt
U �

iþ1;1 � U �
i;1 þ V �

i;1 þ V �
iþ1;1

� �
: ð10Þ
We have solved (9) using standard multigrid software. It was verified that $ Æ U decreases with Dx (approx-

imately first order [2]). After solving (9), the pressure is updated:
pnþ1=2 ¼ pn�1=2 þ qnþ1=2: ð11Þ

Step 4. Redistance of /n + 1: For s = 0. . .� solve
od
os

¼ Sð/Þð1� jrdjÞ; dðs ¼ 0Þ ¼ /nþ1; ð12Þ
where s is an artificial time and S(/) is the sign function, and subsequently set /n+1 equal to d(�). It was
found that the redistance method used by [27] leads to errors in the total mass of each fluid that increase

with time. Russo and Smereka [23] have shown that this is caused by the upwind scheme not being truly

upwind close to the interface, and proposed a fix for the problem. The present application requires long

integration times, and the subcell fix of Russo and Smereka [23] has been used here. Hence,
di;jðs ¼ ðmþ 1ÞDsÞ � dmþ1
i;j ¼

dm
i;j � ðDsÞ=ðDxÞ sgnðd0

i;jÞjdm
i;jj � Di;j

� �
if ði; jÞ 2 RDx;

dm
i;j � Dssgnðd0

i;jÞGð/i;jÞ otherwise;

8<
: ð13Þ
where G(/i,j) is a second-order upwind discretisation of |$/| � 1, RDx are the points within one grid point

from the zero level set, and
Di;j ¼
ðDxÞd0

i;j

Dd0
i;j

; ð14Þ
with
Dd0
i;j ¼ maxfððd0

iþ1;j � d0
i�1;jÞ

2 þ ðd0
i;jþ1 � d0

i;j�1Þ
2Þ1=2=2;

jd0
iþ1;j � d0

i;jj; jd0
i;j � d0

i�1;jj; jd0
i;jþ1 � d0

i;jj; jd0
i;j � d0

i;j�1j; cg:
ð15Þ
We have used here c = Dx; smaller values were found to lead eventually (large t) to deviations in the inter-
face shape. At points where Dd0

i;j ¼ Dx, (13)–(15) result in dmþ1
i;j ¼ dm

i;j. It was verified that the L1 norm of the
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error in d is second order if c = 0 [23]. But c = Dx results in a lower rate, tests indicate approximately first

order convergence.

Even after this modification, the total mass of each phase was not exactly conserved, and at long times, a

slow increase in the area occupied by one of the phases was sometimes observed, in particular at large

deformation of the interface. Therefore, at the end of each timestep, the area occupied by one fluid phase
V and interface length S are determined from a piecewise linear reconstruction of the interface, and the

level-set function at all points is then corrected using (as proposed by Sussman and Uto [28])
/ ¼ /þ V � V exact

2S
; ð16Þ
where Vexact is the (constant) exact value of the area of the fluid phase considered. A similar correction was

used in [24] for boundary-element simulations of similar problems.

It was verified that in systems with fixed contact lines, no contact-line motion occurs. In earlier imple-

mentations of the method, (16) was not used, and small velocity fluctuations were observed near the inter-

face, even for a circular-cap-shaped drop on a wall in quiescent fluid. These small velocities (possibly

generated by discretisation errors in the surface tension term in the momentum equations) would after a

long integration time deform the interface. However, when using (16), these distortions are smeared out
over the entire interface, and the interface remains stationary.
3. Boundary conditions for flows with moving contact lines

The slip condition (1) is applied along the entire wall with contact lines, following most analytical studies

(e.g. [6]). For sufficiently small values of k, this results in slip being only significant in close proximity of

moving contact lines. The condition is applied by using a third-order discritisation of (1) to obtain U1 at

ghostpoints. The condition (2), or (3), is applied in the redistance step, using an iterative procedure at each

artificial timestep (13). The results of this iterative procedure are values for di,j at ghostpoints, and a new

approximation for the position of contact lines, x1 = Xcl(tn+1). These steps (numbered a–d) are described in

this section.

3.1. Determination of h and Xcl(t + Dt)

Step a. First, the position of the interface at the height of the centres of the first two layers of cells adja-

cent to the wall (X1 and X2, respectively) is obtained from interpolation,
X j ¼ xi;j þ j/i;jj=ðj/i;jj þ j/iþ1;jjÞ ðif /i;j/iþ1;j < 0Þ; ð17Þ
xi,j is the coordinate along the wall of the cell centre (i, j).

Step b. If the contact-line speed is prescribed, the most-recent values of contact angles are used to obtain

a first approximation of Ucl from (3): at the (m + 1)th redistance step (13), the contact angle value of the

previous (mth) redistance step is used, or, at m = 0, the value from the previous timestep (at the first time-

step, and m = 0, the contact angles are obtained from X1 and a similar interpolation formula for Xcl). The
position of a contact line at time tn+1, Xcl(tn+1), is then obtained from Xcl(tn+1) = Xcl(tn) + UclDt. If (2) is
used, Xcl(tn+1) = Xcl(tn) at this stage.

Step c. The contact angle for each contact line is obtained from the results of steps a and b,
sin h ¼ Dx=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX 1 � X clÞ2 þ ðDx=2Þ2

q : ð18Þ
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This is used in all test problems discussed in this paper. Alternatively, X2 can be used as well in other (higher-

order) approximations (in some simulations presented in Fig. 9, tan h ¼ Dx=ð1
5
X 1 þ 3

5
X 2 � 4

5
X clÞ has been

used). However, in order to obtain an overall method with more than first-order convergence properties,

several other difficulties would have to be addressed (this is discussed in the next section). If the contact-

angle is prescribed, it is first checked whether the resulting value of h is outside [hR,hA]. If it is, h is set
to either hA or hR, as appropriate: if h > hA, then h is set to hA; if h < hR, then h is set to hR. X

cl is then

changed accordingly, e.g., from Xcl = X1 + D x/(2 tanh) (consistent with (18)). At relatively large contact-

line speed values, the interface is curved in a small area around the contact line, such that the angle between

the interface and the horizontal changes for spreading drops from a maximum hmax just above the contact

line to h at the contact line. Therefore, in this paper, for cases without hysteresis, we have used a slight mod-

ification by using X cl ¼ X 1 þ Dx=ðtan hþ tan hmaxÞ (for cases with hysteresis, (18) would have to be made

consistent with such modified expression for Xcl).

Steps b and c are repeated until h has converged to within a small correction (typically 10�4) of the pre-
vious iterative value. This procedure is carried out at each pseudo timestep in the redistance operation. For

sufficiently small timesteps, h(tn+1) and Xcl(tn+1) are close to their values at time tn, and the iterative proce-

dure may be expected to converge rapidly. Tests showed that |hi � hi�1|, where hi is the value of a contact

angle after i iterations, is typically less than 0.01|hi�1 � h i�2|, so that only a few iterations are needed.

3.2. Prescription of / at ghostcells

Once h(tn+1) and Xcl(tn+1) have been determined in a pseudo timestep of the redistance operation (step 4
in Section 2), as outlined in Section 3.1, the value of di,j at each ghostcell is determined such that it is con-

sistent with the new contact angle and contact-line position. This is step d below, which is discussed in this

section.

Boundary conditions should not be imposed on the level-set function for flows without contact lines,

because during the redistance step, information travels along characteristics away from the interface to-

wards the boundaries [23]. The value of the level-set function in ghostcells along such walls is therefore ob-

tained from second-order extrapolation. From the same argument it follows, however, that when

representing interfacial flow with contact lines by extrapolating the interface through the wall, a boundary
condition should be imposed on walls with contact lines. Hence, for the left contact line shown in Fig. 1, the

signal propagates away from the wall for any point left of that contact line, and a boundary condition (ob-

tained from the distance to L1) at ghostpoints is required. For points far to the right of the right contact

line, it is not possible to draw a normal to the nearest imaginary interfaces (dashed part ofL2), the distance

to be used should correspond to that from the solid part of the interface L2, and no boundary condition

should be imposed on d (the value of d in ghostcells is therefore obtained from second-order extrapolation).

The two points P and Q in Fig. 1 indicate possible ghost-point locations between two contact lines. At P,

a boundary condition is required for d. The value of d at P is should be set to the distance to the line L1. At
Fig. 1. For the simulation of (moving) multiple contact lines, interfaces that intersect with walls are extrapolated (indicated by the

dashed lines). The distance to imaginary interfaces is used to determine boundary conditions for the level-set function.
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Q, the minimum distance to an interface may be that to the solid part of L1, which can be obtained from

extrapolation of d from the interior. Hence, the final step, after steps a–c in Section 3.1, is

Step d. The absolute value of di,0 at a ghost-cell location xg = (xi,0�Dx/2) is set to
Fig. 2.

distanc
jdi;0j ¼ minfDextrapol;DL1
;DL2

g; ð19Þ

where Dextrapol = |2di,1 � di,2| is an extrapolated value, and DLk is the distance between xg and the extrap-
olated interface Lk. Subsequently, the sign of di,0 is set such that it is consistent with which side of the inter-

face xg is located.
It was found that extrapolation should be used with some caution. For ghostpoints to the left of L1 in

Fig. 1, where the distance DL1
to the imaginary interface should be used, the extrapolated level-set function

Dextrapol from a previous iterative step may happen to be less than this distance. As a result, the latter would

be used instead (cf. (19)) / was sometimes found to tend to zero for all ghostpoints to the left of L1. The

cause of this instability has been eliminated by only using, at ghostpoints from where a normal can be

drawn to an imaginary interface, an extrapolated value for d at ghostpoints located between the two contact
lines.

3.3. Discussion

The linear extrapolation of d, as well as the straight-line extrapolation of the interface into the wall, can

alter the curvature of the interface close to the contact line. The curvature is used in the source-term in the

momentum equations (7), wherein it is multiplied by $H�(/) [27]. In Fig. 2, the x2-component of the source

term is shown for a circular cap, with a prescribed contact angle (of 10�) equal to the angle between the
circle and the horizontal.

Left of the contact line, the source term in the momentum equation is expected to be non-zero at points

that are within a distance � from the extrapolated interface. For very small contact angles, many cells left of

the contact line and adjacent to the wall will be within this distance, and an (artificial) force on the fluid in

these points would result from the finite thickness of the extrapolated interface. But since d at these points

corresponds to the (signed) distance function from the extrapolated interface (a straight line), the curvature,

and therefore the source term in the momentum equation, is actually zero in this region. This may be a

desirable (but fortunate) effect of using a straight-line as the extrapolated interface. In Fig. 2, we see that
the source term is indeed abruptly cut off just left of the contact line (the same trend was found for a smaller

angle, h = 2.5�). An undesired side-effect is that the source term is seen to be somewhat disturbed at the

mesh point at which this transition between regions of zero and non-zero curvature occurs. This was only

found to occur at a single mesh point (also for finer meshes). In order to remove these artifacts, which occur

only at contact angles close to 0� and 180�, a different extrapolated interface shape would have to be used.

With regard to points right of the contact line, the second-order extrapolation of d used there may lead

to a distortion in the curvature close to the wall. The curvature is defined as $ Æ n (where n = (n1,n2) = ($/)/
|$/| is the local normal vector of the interface), which involves evaluation of second-order derivatives of d.
Some deviation in the curvature was indeed observed in cells adjacent to the wall in regions where extrap-

olation of d to ghostcells was used. As mentioned above, however, this would only have an effect on the
Isocontours of the upward component of surface-tension source term in the momentum equation for a circular droplet. The

e to the horizontal axis is half of the grid spacing.
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results if these points are sufficiently close to the interface. The deviation would be expected to be most sig-

nificant for very small or very large contact angles: otherwise, the normalizing factor |$/| in n (used to

determine the curvature) would be dominated by derivatives along the wall, which should not be affected

strongly by extrapolation into the wall. On the other hand, at small or large h, the curvature is necessarily
small anyway. We see from Fig. 2 that for h = 10�, right of the contact line the source term in the momen-
tum equation in the cells adjacent to the wall appears to be reasonably consistent with that in the rest of the

interior.
4. Convergence tests

We consider here two cases of a droplet that is immersed in a different fluid, and adhering to a long

boundary of a rectangular domain (2 · 1, discretisation is 2N · N). The fluid properties used in these cases
are listed in Table 1. In Case I, the densities are equal whereas the viscosities differ; a density contrast is used

in Case II. The sliplength is set to k = 0.02. The corresponding maximum capillary number in Case I is lUcl

(t = 0)/r = 6.74 · 10�2 and Reynolds number qHUcl/l = 6.731 (based on initial droplet height H). The

droplets are circular caps initially (radius 1.66), and the contact angles are h1,2 = 30�, which is different from

the static contact angle hs = 120�. The contact-line speed is prescribed in both cases, with j = 0.1 in (3). As a

result of (3), the contact lines start to move, until h1,2 = 120�. The qualitative flow features for this problem

are discussed in detail in Section 5. Results for the convergence of the velocity and level-set function fields

are given in Table 2, in terms of
Table

Cases

Case I

Case I

Case I

Table

Conve

integra

Case I

Case I

Case I

Case I
EN ðUi; tÞ ¼
Z

jðUiÞN ðx; tÞ � ðUiÞN=2ðx; tÞj dA; ð20Þ
and a corresponding expression for EN(H(/);t), whereH(/) is the Heaviside function. The convergence rate

is, for a 2N · N mesh, defined as log2ðEP
N=E

P
2N Þ. Also given in Table 2 are the convergence rates of the time-

integrated difference in the perimeter (|PN(t) � P2N(t)|) and contact angles of a droplet for different mesh

sizes.

Unlike the single-phase version, the method for two-phase flow is obviously not second-order accurate

(it was checked that the method is second order for single-phase flows by testing against an analytical
1

considered. A subscript �1� refers to the fluid of the droplet/bubble, �2� to the exterior fluid

q1 q2 l1 l2 r

1 1 4.95 · 10�2 4.95 · 10�3 0.11

I 1 20 4.95 · 10�2 4.95 · 10�2 2.21

II 1 0.05 1 0.05 100

2

rgence rates for the integrated difference in velocity components and H(/) between successive approximations, and the time-

ted perimeter P and contact angle h1

U1 U2 H(/) P h

, 128 · 64 0.61 0.71 1.1 1.9 2.2

, 256 · 128 0.88 0.95 1.1 0.71 0.97

I, 128 · 64 2.3 2.2 0.89 1.5 0.83

I, 256 · 128 1.1 1.2 1.1 0.88 1.1
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�decaying vortices� solution of the unsteady Navier–Stokes equations). This is not caused by the presence of

contact lines; tests for a bubble rising in a box gave similar results.

The method is not expected to be second-order accurate, because of the redistance step: in (15), c = Dx
reduces the convergence rate. A second-order accurate redistance would be required for an overall second-

order method. Furthermore, Aleinov et al. [1] showed that their method (they used a different redistance
step) is only second-order overall if the two fluids have equal density and viscosity values. This must be

due to the fact that errors in / are amplified when taking spatial derivatives of the viscosity (in (7)) and

density (in (9)) (see (5) and (6)).
5. Results and comparison with other work

A widely studied problem with contact lines is the deformation of a droplet in a creeping shear flow
[8,18,24,31]. In Fig. 3, the method is tested against boundary-element simulations of Schleizer and Bon-

necaze [24] (their Fig.10b). The problem addressed here is a droplet that adheres to the long (bottom) wall

of a rectangular geometry, with pinned contact lines ((3) with j = 0). The droplet is a circular cap, has unit

area (defining the unit length as half the channel width), and the initial contact angles are 60�. The viscosity
and density of the droplet are equal to that of the surrounding fluid. The opposite (top) wall moves at speed

U0 = 1. The surface tension coefficient r is such that the capillary number lHU0/r = 0.1, where H is the

initial droplet height. The droplet is deformed by the flow, and reaches a steady-state shape. In the present

method, the timestep restriction for very viscous fluids is severe. Therefore, the unsteady Stokes equations
were used instead for this case. Also shown in Fig. 3 is the analogous comparison for a pressure-driven flow

considered by Schleizer and Bonnecaze [24].

We study in Figs. 4–6 in more detail the flow corresponding to Case I in Section 4 (see also Table 1), for a

droplet relaxing from h1,2 = 30� to its static contact angle of 120�. The contact angles and perimeter are

given as a function of time in Fig. 4. Also shown in Fig. 4 (by the dashed line) is the value that the perimeter

would have had, had the interface been a circular cap, with h1,2(t) equal to the actual values. It is seen that

for t P 5, this coincides with the actual perimeter, showing that for these longer times the contact lines have

slowed down enough for the interface to be a circular cap. This regime is dominated by the contact-line law
(3). It was found that the initial period, during which the interface is not circular, is sensitive to the value of

k.
A snapshot of the contact-line region during this initial period is shown in Fig. 5, in a frame moving with

the left contact line. The flow inside the drop is seen to be of the expected wedge-flow type. Outside the

drop, the fluid moves along the interface together with the wedge flow inside, away from the contact line.
Fig. 3. Comparison against results of Schleizer and Bonnecaze (reproduced with permission from Cambridge University Press from

[24]), who used a boundary-element method. The solid and short-dashed lines correspond to their results for pressure-driven and shear

flow, respectively. The long dashes indicate the present results, using a 128 · 32 grid.
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Fig. 4. Perimeter P and contact angles as a function of time for a droplet with moving contact lines in a fluid without external flow.

Case I: relaxation from initial contact angles of 30�, to the static contact angle of 120�. The long-dashed line represents the perimeter

for an exact circular interface with contact angles corresponding to the values resulting from the simulations.

Fig. 5. Detail of the flow near the left contact line (in a frame moving with the contact line) at t = 1.62, also showing the velocity field.
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The exterior fluid flows towards the contact line under an angle, which is in qualitative agreement with the

flow patterns observed by Dussan V. and Davis [10]. This exterior fluid inflow is supplied by a vortical

structure, caused by the upward motion of the central part of the drop.

In order to investigate the regularisation of the stress singularity, the shear rate oU1/ox2 along the wall is

shown in Fig. 6. In Fig. 6(a), results are shown for k = 0, for different mesh sizes. We see that the maximum
shear rate increases rapidly with mesh refinement, apparently not converging, consistent with a stress
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singularity. In Fig. 6(b), the corresponding results are shown for k = 0.02 in the slip condition (1) along the

entire wall. The peaks in the shear-rate at the contact lines are reduced significantly, and appear to be

converging as the mesh is refined.

The interface shape for a spreading droplet in the viscous bending regime is shown in Fig. 7 (Case III in

Table 1, with (2), hA = 10�, initial large-scale contact angle of 40�, hR = 0, k = 0.01). In these simulations,
x1
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Fig. 7. Dependence of interface shape on grid spacing in the contact-line region, using (2) with hA = 10�, hR = 0, k = 0.01 for Case III;

drop area is 1.5, initial (large-scale) contact angles are 40�. The contact line is moving to the right. N is (for interfaces from right to left)

8, 16, 32, 64 and 128, respectively.
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the total domain dimensions are 8 · 1, and the mesh size is 8N · N. The results appear to converge for small

grid spacing. Using a coarse mesh is seen to increase the size of the region in which the bending occurs, as

well as the contact-line speed. This is consistent with the expectation that a coarse mesh leads to a larger

effective slip coefficient.

A lubrication theory for two-dimensional droplet spreading has been presented by Hocking [13]. For
very small sliplengths, he showed that the solution of the flow on a macroscale (away from the contact-line

region) can be matched to the solution for the contact-line region by introducing an intermediate region,

provided that
h3d ¼ h3A þ 9Cacl ln
hm
k

� �
; ð21Þ
where Cacl ” l1U
cl/r, hd is an apparent contact angle, associated with the large-scale flow, and
hm ¼ 2ahA=ð3e2Þ ð22Þ
(a is the instantaneous drop radius). A similar result, but more generally valid, has been derived in [5],

which has been compared to experiments by Foister [11], amongst others. For very thin droplets, such that

the (constant) drop area is ha2, (21) also agrees approximately with Tanner�s experiments [29] for the two-

dimensional case, in which a � t
1
7 if h � hA.

For (21) to be applicable, k must be very small, making 1/ln(hm/k) a small parameter. Nevertheless, a
relation of the type (21) may be expected to be valid at larger k (in [19], hm/k = 8). The apparent angle

hd has been associated with the maximum tangential angle of the interface, hmax [30], although [13] cau-

tioned that using (21) in a higher-order approximation destroys the validity of the concept of an apparent

contact angle.

An estimate of hmax was obtained in the present simulations from the reconstruction of the interface,

using bilinear interpolation. Results presented here are for the average values of hmax and Cacl, over the

time it took the contact line to move a distance 4Dx. Averaging was necessary, because determining Ucl

requires time-differentiation of the contact-line position, and small jumps in contact-line position occur
when the contact line moves into a new grid cell. The resulting dependence of hmax on Cacl is shown in

Fig. 8(a) for k = 0.01 and different grid spacings, and in Fig. 8(b) for k = 0.005, 0.01 and 0.02 (other param-

eters are as in Fig. 7). In order to compare the result against (21) and (22), it should be noted that this ana-

lytical result gives a dynamic contact angle for a droplet of half-length a(t), spreading at dimensionless

speed Cacl. In Fig. 8(b), (21) and (22) is represented by long dashes, a corresponding to a value of Cacl

was obtained from simulations.

The simulation results in Fig. 8(a) approach the lubrication theory at low values of Cacl. A difference at

larger capillary number may be caused by either the drop not being sufficiently thin for the lubrication the-
ory to hold, or by the fact that (21) is a lowest-order approximation in the capillary number. It seems un-

likely that �numerical slip� is the cause, as the contact-line moves slower in the simulations than in the

theory. The solid lines in the figure are for density and viscosity contrasts of 20, the long dashes for 40.

It is seen that the exterior fluid hardly has any effect on the results for such contrasts. This is also consistent

with experimental findings [11].

It is seen from Fig. 8(b) that the value of hmax in the simulations is somewhat smaller than the result (21)

and (22) for hd, especially at low values of Cacl. There is still some dependence on mesh size in the results (as

is also clear from Fig. 8(a)): doubling the grid spacing for k = 0.005 resulted in a downward shift in Fig. 8(b)
by about 0.02. Using an even smaller grid spacing would require an excessive computational effort, whereas

k = 0.02 is already clearly too large for the lubrication theory to apply ((21) for larger values of k results in

an unphysical negative value of hd). The numerical simulations presented in [30], using the evolution equa-

tion for the drop height (obtained from lubrication theory), show that hmax could be fitted well by an equa-
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tion of the form (21) for a droplet sliding down a vertical plane, but with the logarithmic term replaced by a

constant:
h3d ¼ h3A þ aCacl: ð23Þ

An example of such a fit is shown for k = 0.005, which is seen to be an acceptable fit to the data. Overall, we

can infer from Fig. 8 that there is reasonable agreement between simulations and lubrication theory.

Also shown in Fig. 8(b) is the simulation result for the same droplet using the smallest value of k
(=0.005), but with a smaller initial contact angle (23�). Apart from a short initial period (corresponding

to the large-Cacl end of the results), the dynamic contact angle is seen to be virtually independent of initial

conditions, as expected from the lubrication theory.

We present results for flows with moving contact lines that are not of conventional free-surface flow type

in Fig. 9. In Fig. 9(a), the velocity field is shown for a bubble that moves along a wall, due to an imposed

shear flow, using (3). The wake moves with the bubble. It is seen that, due to the rotational flow inside the

bubble, the fluid makes a U-turn between the bubble and its wake, resulting in a wake some distance down-

stream. The time-evolution of the perimeter and contact angles is shown in Fig. 9(b). A small oscillation is
observed in h1,2, but the amplitude decreases if a finer mesh is used.
6. A macroscale approach for small sliplengths

It is clear from the results presented above that, for an accurate resolution of the flow, the grid spacing

should be less than the sliplength. The results presented in Figs. 7 and 8 show that, for the case that the



Fig. 9. (a) Velocity flags (indicating local direction of fluid velocity) for a bubble with moving contact lines in a shear flow (detail) with

q1 = 1, q2 = 20, l1 = l2 = 0.1592, r = 3.175. Initial contact angles are 90�; hs = 120�, j = 0.1, k = 0.04. Simulations are approaching a

quasi-steady state, in which the drop moves at constant speed without further deformation, for a 128 · 32 mesh. (b) Perimeter P and

contact angles as a function of time. The dashed line corresponds to h2 when using a 64 · 16 mesh.
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contact angle is prescribed, a mesh coarser than the sliplength leads effectively to too much slip. The �slip� is
provided by discretisation errors, since the velocity is not exactly prescribed at the wall because it is defined

at cell centres, not cell vertices. This restricts the practical application of the present method to values of k
that are not so small that an unrealistically large mesh would be required (although local mesh refinement is

of course an option [27]).
We test here the possibility of solving the flow on a macroscale only, as follows. For spreading droplets,

the velocity of the contact line satisfies (21),
U cl ¼ h3d � h3A
� �

r 9l ln
hm
k

� �
:

�
ð24Þ
Using this expression to integrate Xcl(t) has the advantage that the right-hand side contains only macroscale

quantities. A similar approach would be to use (23), with a proportional to ln(1/k), and to use simulations

as in the previous section (for relatively large k) to determine the proportionality factor. We shall combine

these approaches here with still prescribing the corresponding value of hA.
In Fig. 10 the result for k = 5 · 10�3 has been copied from Fig. 8(b), obtained from the �full� simulations

of the previous section. Also shown are results using the �macroscale� approach of this section, in which (23)
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has been used, with the value of a obtained from the full simulation. The fit is shown in Fig. 8(b) for com-

parison; a was chosen such that especially the results for low values of Cacl are well represented (it is a low-

est-order approximation in Cacl). The macroscale results for Xcl(t) appear to converge to a value somewhat

above the result from the full simulation. The difference has resulted during t < 0.4, which was found to

correspond to values of hm > 0.46. From Fig. 8(b) we can conclude that the difference may be attributed

to a small error in the fit (23), which for this value of a overpredicts the contact-line speed.
This result indicates that a macroscale approach can be used to determine spreading rates. The second

set of results shown in Fig. 10 are for a realistic value of k (=10�6), using (24). Again, the results appear to

converge rapidly, despite the small value of k.
7. Discussion

A level-set approach has been proposed for the simulation of flow with moving contact lines that ac-
counts for effects of inertia, contact-line hysteresis and slip. The method is shown to converge, and to agree

with previous work. The technique proposed here does not use discretisation errors to introduce slip [19,20],

the sliplength is imposed explicitly instead.

A macroscale approach has been suggested for the simulation of flows with very small values of k. Alter-

natively, local mesh refinement may be used, although this has not been pursued here (the level-set method

of Sussman et al. [27] facilitates local mesh refinement). The macroscale approach assumes that (3) (or (24))

represents the solution of the contact-line region, where h (resp. hd) is the macroscopic contact angle. The

grid spacing is then assumed to be much larger than k. Such an approach may be justifiable in practical
cases, since Cox [5] derived, under fairly general conditions, a relation between the contact-line speed, mac-

roscopic and microscopic contact angles that is similar to (3), with j dependent on lnk�1 (see (24)). In such

an approach, relaxation effects [4,25] could also be taken into account, since these lead to relations similar

to (24), with the right-hand side depending on additional parameters.
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